
Last saved: 11/22/2013 Kabacoff / R in Action 2e 1

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

 23
Advanced graphics with

the lattice package

This chapter covers

 An introduction to the lattice package

 Grouping and conditioning

 Adding information with panel functions

 Customizing a lattice graph's appearance

In previous chapters, we created a wide variety of general and specialized graphs (and had lots of fun in the
process). Most were produced using R’s base graphics system. Given the diversity of methods available in R, it may
not surprise you to learn that there are actually four separate and complete graphics systems currently available.

In addition to base graphics, we have graphics systems provided by the grid, lattice, and ggplot2
packages. Each is designed to expand on the capabilities of, and correct for deficiencies in, R’s base graphics
system. The ggplot2 package is described in chapter 19 of R in Action (2nd ed). In this bonus chapter, we will look
at the lattice package, written by Deepayan Sarkar (2008). The lattice package implements trellis graphics
as outlined by Cleveland (1985, 1993) and described on the Trellis website. Built using the grid package, the
lattice package has grown beyond Cleveland’s original approach to visualizing multivariate data, and now
provides a comprehensive alternative system for creating statistical graphics in R.

23.1 The lattice package
The lattice package provides a comprehensive graphical system for visualizing univariate and multivariate data.
In particular, many users turn to the lattice package because of its ability to easily generate trellis graphs.

A trellis graph displays the distribution of a variable or the relationship between variables, separately for each
level of one or more other variables. Consider the following question: How do the heights of singers in the New
York Choral Society vary by their vocal parts?

Data on the heights and voice parts of choral members is provided in the singer dataset contained in the lattice
package. In the following code

library(lattice)
histogram(~height | voice.part, data = singer,
 main="Distribution of Heights by Voice Pitch",
 xlab="Height (inches)")

height is the dependent variable, voice.part is called the conditioning variable, and a histogram is created for

Bonus chapter for
R in Action 2ed

2 Kabacoff / R in Action 2e Last saved: 3/25/2015

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

each of the eight voice parts. The graph is shown in figure 23.1. It appears that tenors and basses tend to be taller
than altos and sopranos.

In trellis graphs, a separate panel is created for each level of the conditioning variable. If more than one
conditioning variable is specified, a panel is created for each combination of factor levels. The panels are arranged
into an array to facilitate comparisons. A label is provided for each panel in an area called the strip. As you’ll see,
the user has control over the graph displayed in each panel, the format and placement of the strip, the
arrangement of the panels, the placement and content of legends, and many other graphic features.

The lattice package provides a wide variety of functions for producing univariate (dot plots, kernel density
plots, histograms, bar charts, box plots), bivariate (scatter plots, strip plots, parallel box plots), and multivariate
(3D plots, scatter plot matrices) graphs.

Each high-level graphing function follows the format

graph_function(formula, data=, options)

where:

 graph_function is one of the functions listed in the second column of table 23.2.

 formula specifies the variable(s) to display and any conditioning variables.

 data= specifies a data frame.

 options are comma-separated parameters used to modify the content, arrangement, and annotation of the
graph. See table 23.3 for a description of common options.

Distribution of Heights by Voice Pitch

Height (inches)

P
er

ce
nt

 o
f

T
ot

al

0

10

20

30

40

60 65 70 75

Bass 2 Bass 1

60 65 70 75

Tenor 2

Tenor 1 Alto 2

0

10

20

30

40

Alto 1
0

10

20

30

40

Soprano 2

60 65 70 75

Soprano 1

Figure 23.1 Trellis graph of singer heights by voice pitch

Last saved: 11/22/2013 Kabacoff / R in Action 2e 3

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

Let lowercase letters represent numeric variables and uppercase letters represent categorical variables
(factors). The formula in a high-level graphing function typically takes the form

y ~ x | A * B

where variables on the left side of the vertical bar are called the primary variables and variables on the right are
the conditioning variables. Primary variables map variables to the axes in each panel. Here, y~x describes the
variables to place on the vertical and horizontal axes, respectively. For single-variable plots, replace y~x with ~x.
For 3D plots, replace y~x with z~x*y. Finally, for multivariate plots (scatter plot matrix or parallel coordinates
plot) replace y~x with a data frame. Note that conditioning variables are always optional.

Following this logic, ~x|A displays numeric variable x for each level of factor A. y~x|A*B displays the
relationship between numeric variables y and x separately for every combination of factor A and B levels. A~x
displays categorical variable A on the vertical axis and numeric variable x on the horizontal axis. ~x displays
numeric variable x alone. Other examples are shown in table 23.2.

To gain a quick overview of lattice graphs, try running the code in listing 23.1. The graphs are based on the
automotive data (mileage, weight, number of gears, number of cylinders, and so on) included in the mtcars data
frame. You may want to vary the formulas and view the results. (The resulting output has been omitted to save
space.)

Table 23.2 Graph types and corresponding functions in the lattice package

Graph type Function Formula examples

3D contour plot contourplot() z~x*y

3D level plot levelplot() z~y*x

3D scatter plot cloud() z~x*y|A

3D wireframe graph wireframe() z~y*x

Bar chart barchart() x~A or A~x

Box plot bwplot() x~A or A~x

Dot plot dotplot() ~x|A

Histogram histogram() ~x

Kernel density plot densityplot() ~x|A*B

Parallel coordinates plot parallelplot() dataframe

Scatter plot xyplot() y~x|A

Scatter plot matrix splom() dataframe

4 Kabacoff / R in Action 2e Last saved: 3/25/2015

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

Strip plots stripplot() A~x or x~A

Note: In these formulas, lowercase letters represent numeric variables and uppercase letters represent categorical variables.

Listing 23.1 lattice plot examples

library(lattice)
attach(mtcars)

gear <- factor(gear, levels=c(3, 4, 5),
 labels=c("3 gears", "4 gears", "5 gears"))
cyl <- factor(cyl, levels=c(4, 6, 8),
 labels=c("4 cylinders", "6 cylinders", "8 cylinders"))

densityplot(~mpg,
 main="Density Plot",
 xlab="Miles per Gallon")

densityplot(~mpg | cyl,
 main="Density Plot by Number of Cylinders",
 xlab="Miles per Gallon")

bwplot(cyl ~ mpg | gear,
 main="Box Plots by Cylinders and Gears",
 xlab="Miles per Gallon", ylab="Cylinders")

xyplot(mpg ~ wt | cyl * gear,
 main="Scatter Plots by Cylinders and Gears",
 xlab="Car Weight", ylab="Miles per Gallon")

cloud(mpg ~ wt * qsec | cyl,
 main="3D Scatter Plots by Cylinders")

dotplot(cyl ~ mpg | gear,
 main="Dot Plots by Number of Gears and Cylinders",
 xlab="Miles Per Gallon")

splom(mtcars[c(1, 3, 4, 5, 6)],
 main="Scatter Plot Matrix for mtcars Data")

detach(mtcars)

High-level plotting functions in the lattice package produce graphic objects that can be saved and

manipulated. For example,

library(lattice)
mygraph <- densityplot(~height|voice.part, data=singer)

creates a trellis density plot and saves it as object mygraph. But no graph is displayed. Issuing the statement
plot(mygraph) (or simply mygraph) will display the graph.

It’s easy to modify lattice graphs through the use of options. Common options are given in table 23.3. You’ll see
examples of many of these later in the chapter.

Table 23.3 Common options for lattice high-level graphing functions

Options Description

aspect A number specifying the aspect ratio (height/width) for the graph in each

panel.

Last saved: 11/22/2013 Kabacoff / R in Action 2e 5

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

col, pch, lty,
lwd

Vectors specifying the colors, symbols, line types, and line widths to be

used in plotting, respectively.

group Grouping variable (factor).

index.cond List specifying the display order of the panels.

key (or
auto.key)

Function used to supply legend(s) for grouping variable(s).

layout Two-element numeric vector specifying the arrangement of the panels

(number of columns, number of rows). If desired, a third element can be

added to indicate the number of pages.

main, sub Character vectors specifying the main title and subtitle.

panel Function used to generate the graph in each panel.

scales List providing axis annotation information.

strip Function used to customize panel strips.

split, position Numeric vectors used to place more than one graph on a page.

type Character vector specifying one or more plotting options for scatter plots

(p=points, l=lines, r=regression line, smooth=loess fit, g=grid, and so on).

xlab, ylab Character vectors specifying horizontal and vertical axis labels.

xlim, ylim Two-element numeric vectors giving the minimum and maximum values for

the horizontal and vertical axes, respectively.

You can issue these options in the high-level function calls or within the panel functions discussed in section 23.3.
You can also use the update() function to modify a lattice graphic object. Continuing the singer example, the

following

newgraph <- update(mygraph, col="red", pch=16,
 cex=.8, jitter=.05, lwd=2)

would modify mygraph using red curves and symbols (color="red"), filled dots (pch=16), smaller (cex=.8)
and more highly jittered points (jitter=.05), and curves of double thickness (lwd=2). The resulting graph is
saved as newgraph. Now that we’ve reviewed the general structure of a high-level lattice function, let’s look at
conditioning variables in more detail.

6 Kabacoff / R in Action 2e Last saved: 3/25/2015

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

23.2 Conditioning variables
As you’ve seen, one of the most powerful features of lattice graphs is the ability to add conditioning variables. If
one conditioning variable is present, a separate panel is created for each level. If two conditioning variables are
present, a separate panel is created for each combination of levels for the two variables. It’s rarely useful to
include more than two conditioning variables.

Typically, conditioning variables are factors. But what if you want to condition on a continuous variable? One
approach would be to transform the continuous variable into a discrete variable using R’s cut() function.
Alternatively, the lattice package provides functions for transforming a continuous variable into a data structure
called a shingle. Specifically, the continuous variable is divided up into a series of (possibly) overlapping ranges.
For example, the function

myshingle <- equal.count(x, number=n, overlap=proportion)

will take continuous variable x and divide it up into n intervals, with proportion overlap, and equal numbers of
observations in each range, and return it as the variable myshingle (of class shingle). Printing or plotting this
object (for example, plot(myshingle)) will display the shingle’s intervals.

Once a continuous variable has been converted to a shingle, you can use it as a conditioning variable. For
example, let’s use the mtcars dataset to explore the relationship between miles per gallon and car weight
conditioned on engine displacement. Because engine displacement is a continuous variable, first let’s convert it to a
shingle variable with three levels:

displacement <- equal.count(mtcars$disp, number=3, overlap=0)

Next, use this variable in the xyplot() function:

xyplot(mpg~wt|displacement, data=mtcars,
 main = "Miles per Gallon vs. Weight by Engine Displacement",
 xlab = "Weight", ylab = "Miles per Gallon",
 layout=c(3, 1), aspect=1.5)

The results are shown in figure 23.2. Note that we’ve also used options to modify the layout of the panels (three
columns and one row) and the aspect ratio (height/width) in order to make comparisons among the three groups
easier.

You can see that the labels in the panel strips of figure 23.1 and figure 23.2 differ. The representation in figure
23.2 indicates the continuous nature of the conditioning variable, with the darker color indicating the range of
values for the conditioning variable in the given panel. In the next section, we’ll use panel functions to customize
the output further.

Last saved: 11/22/2013 Kabacoff / R in Action 2e 7

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

Miles per Gallon vs. Weight by Engine Displacement

Weight

M
ile

 p
er

 G
al

lo
n

10

15

20

25

30

35

2 3 4 5

displacement

2 3 4 5

displacement

2 3 4 5

displacement

Figure 23.2 Trellis plot of mpg versus car weight conditioned on engine displacement. Because engine displacement is a
continuous variable, it has been converted to three nonoverlapping shingles with equal numbers of observations.

23.3 Panel functions
Each of the high-level plotting functions in table 23.2 employs a default function to draw the panels. These default
functions follow the naming convention panel.graph_function, where graph_function is the high-level
function. For example,

xyplot(mpg~wt|displacement, data=mtcars)

could have also be written as

xyplot(mpg~wt|displacement, data=mtcars, panel=panel.xyplot)

This is a powerful feature because it allows you to replace the default panel function with a customized function of
your own design. You can incorporate one or more of the 50+ default panel functions in the lattice package into
your customized function as well. Customized panel functions give you a great deal of flexibility in designing an
output that meets your needs. Let’s look at some examples.

In the previous section, you plotted gas mileage by automobile weight, conditioned on engine displacement.
What if you wanted to include regression lines, rug plots, and grid lines? You can do this by creating your own
panel function (see the following listing). The resulting graph is provided in figure 23.3.

Listing 23.2 xyplot with custom panel function

library(lattice)
displacement <- equal.count(mtcars$disp, number=3, overlap=0)

mypanel <- function(x, y) {
 panel.xyplot(x, y, pch=19)  
 panel.rug(x, y)
 panel.grid(h=-1, v=-1)
 panel.lmline(x, y, col="red", lwd=1, lty=2)
 }

xyplot(mpg~wt|displacement, data=mtcars,

8 Kabacoff / R in Action 2e Last saved: 3/25/2015

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

 layout=c(3, 1),
 aspect=1.5,
 main = "Miles per Gallon vs. Weight by Engine Displacement",
 xlab = "Weight",
 ylab = "Miles per Gallon",
 panel = mypanel)

1 Customized panel function

Here, we’ve wrapped four separate building block functions into our own mypanel() function and applied it

within xyplot() through the panel= option #1. The panel.xyplot() function generates the scatter plot using
a filled circle (pch=19). The panel.rug() function adds rug plots to both the x and y axes of each panel.
panel.rug(x, FALSE) or panel.rug(FALSE, y) would have added rugs to just the horizontal or vertical axis,
respectively. The panel.grid() function adds horizontal and vertical grid lines (using negative numbers forces
them to line up with the axis labels). Finally, the panel.lmline() function adds a regression line that’s rendered
as red (col="red"), dashed (lty=2) lines, of standard thickness (lwd=1). Each default panel function has its
own structure and options. See the help page on each (for example, help(panel.lmline)) for further details.

Miles per Gallon vs. Weight by Engine Displacement

Weight

M
ile

 p
er

 G
al

lo
n

10

15

20

25

30

35

2 3 4 5

displacement

2 3 4 5

displacement

2 3 4 5

displacement

Figure 23.3 Trellis plot of mpg versus car weight conditioned on engine displacement. A custom panel function has been used to
add regression lines, rug plots, and grid lines.

As a second example, we’ll graph the relationship between gas mileage and engine displacement (considered as
a continuous variable), conditioned on type of automobile transmission. In addition to creating separate panels for
automatic and manual transmission engines, we’ll add smoothed fit lines and horizontal mean lines. The code is
given in the following listing.

Listing 23.3 xyplot with custom panel function and additional options

library(lattice)
mtcars$transmission <- factor(mtcars$am, levels=c(0,1),
 labels=c("Automatic", "Manual"))

panel.smoother <- function(x, y) {
 panel.grid(h=-1, v=-1)
 panel.xyplot(x, y)
 panel.loess(x, y)
 panel.abline(h=mean(y), lwd=2, lty=2, col="darkgreen")
 }

Last saved: 11/22/2013 Kabacoff / R in Action 2e 9

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

xyplot(mpg~disp|transmission,data=mtcars,
 scales=list(cex=.8, col="red"),
 panel=panel.smoother,
 xlab="Displacement", ylab="Miles per Gallon",
 main="MPG vs Displacement by Transmission Type",
 sub = "Dotted lines are Group Means", aspect=1)

The graph produced by this code is provided in figure 23.4.

MPG vs Displacement by Transmission Type

Dotted lines are Group Means
Displacement

M
ile

s
pe

r
G

al
lo

n

10

15

20

25

30

35

100 200 300 400

Automatic

100 200 300 400

Manual

Figure 23.4 Trellis graph of mpg versus engine displacement conditioned on transmission type. Smoothed lines (loess), grids, and
group mean levels have been added.

There are several things to note in this new code. The panel.xyplot() function plots the individual points,
and the panel.loess() function plots nonparametric fit lines in each panel. The panel.abline() function adds
horizontal reference lines at the mean mpg value for each level of the conditioning variable. (If we had replaced
h=mean(y) with h=mean(mtcars$mpg), a single reference line would have been drawn at the mean mpg value
for the entire sample.) The scales= option renders scale annotations (the axis numbers and tick marks) in red
and at 80 percent of the default font size.

In the previous example, we could have used scales=list(x=list(), y=list()) to specify separate
options for the horizontal and vertical axes. See help(xyplot) for details on the many scale options available. In
the next section, you’ll learn how to superimpose data from groups of observations, rather than presenting them in
separate panels.

23.4 Grouping variables
When you include a conditioning variable in a lattice graph formula, a separate panel is produced for each level of
that variable. If you want to superimpose the results for each level instead, you can specify the variable as a
grouping variable.

Let’s say that you want to display the distribution of gas mileage for cars with manual and automatic
transmissions using kernel density plots. You can superimpose these plots using this code:

10 Kabacoff / R in Action 2e Last saved: 3/25/2015

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

library(lattice)
mtcars$transmission <- factor(mtcars$am, levels=c(0, 1),
 labels=c("Automatic", "Manual"))
densityplot(~mpg, data=mtcars,
 group=transmission,
 main="MPG Distribution by Transmission Type",
 xlab="Miles per Gallon",
 auto.key=TRUE)

The resulting graph is presented in figure 23.5. By default, the group= option superimposes the plots from each
level of the grouping variable. Points are plotted as open circles, lines are solid, and level information is
distinguished by color. As you can see, the colors are difficult to differentiate when printed in grayscale. Later you’ll
see how to change these defaults.

MPG Distribution by Transmission Type

Miles per Gallon

D
en

si
ty

0.00

0.02

0.04

0.06

0.08

0.10

10 20 30 40

Automatic
Manual

Figure 23.5 Kernel density plots for miles per gallon grouped by transmission type. Jittered points are provided on the horizontal
axis.

Note that legends or keys aren’t produced by default. The option auto.key=TRUE will create a rudimentary
legend and place it above the graph. You can make limited changes to this automated key by specifying options in
a list. For example,

auto.key=list(space="right", columns=1, title=”Transmission”)

places the legend to the right of the graph, presents the key values in a single column, and adds a legend title.
If you want to exert greater control over the legend, you can use the key= option. An example is given in listing

23.4. The resulting graph is provided in figure 23.6.

Last saved: 11/22/2013 Kabacoff / R in Action 2e 11

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

Listing 23.4 Kernel density plot with a group variable and customized legend

library(lattice)
mtcars$transmission <- factor(mtcars$am, levels=c(0, 1),
 labels=c("Automatic", "Manual"))

colors = c("red", "blue")  
lines = c(1,2) #1
points = c(16,17)

key.trans <- list(title="Trasmission",  
 space="bottom", columns=2, #2
 text=list(levels(mtcars$transmission)),
 points=list(pch=points, col=colors),
 lines=list(col=colors, lty=lines),
 cex.title=1, cex=.9)

densityplot(~mpg, data=mtcars,
 group=transmission,
 main="MPG Distribution by Transmission Type",
 xlab="Miles per Gallon",
 pch=points, lty=lines, col=colors,
 lwd=2, jitter=.005,      #3
 key=key.trans)

1 Color, line, point specifications
2 Legend customization
3 Density plot customization

Here, the plotting symbols, line types, and colors are specified as vectors #1. The first element of each vector will
be applied to the first level of the group variable, the second element to the second level, and so forth. A list object
is created to hold the legend options #2. These options place the legend below the graph in two columns, and
include the level names, point symbols, line types, and colors. The legend title is rendered slightly larger than the
text for the symbols.

MPG Distribution by Transmission Type

Miles per Gallon

D
en

si
ty

0.00

0.02

0.04

0.06

0.08

0.10

10 20 30 40

Trasmission
Automatic Manual

Figure 23.6 Kernel density plots for miles per gallon grouped by transmission type. Graphical parameters have been modified and
a customized legend has been added. The custom legend specifies color, shape, line type, character size, and title.

12 Kabacoff / R in Action 2e Last saved: 3/25/2015

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

The same plot symbols, line types, and colors are specified within the densityplot() function #3.
Additionally, the line width and jitter are increased to improve the appearance of the graph. Finally, the key is set
to use the previously defined list. This approach to specifying a legend for the grouping variable allows a great deal
of flexibility. In fact, you can create more than one legend and place them in different areas of the graph (not
shown here).

Before completing this section, let’s consider an example that includes group and conditioning variables in a
single plot. The CO2 data frame, included with the base R installation, describes a study of cold tolerance of the
grass species Echinocholoa crus-galli.

The data describe carbon dioxide uptake rates (uptake) for 12 plants (Plant), at seven ambient carbon
dioxide concentrations (conc). Six plants were from Quebec and six plants were from Mississippi. Three plants
from each location were studied under chilled conditions and three plants were studied under nonchilled conditions.
In this example, Plant is the group variable and both Type (Quebec/Mississippi) and Treatment (chilled/nonchilled)
are conditioning variables. The following code produces the plot in figure 23.7.

Listing 23.5 xyplot with group and conditioning variables and customized legend

library(lattice)
colors <- "darkgreen"
symbols <- c(1:12)
linetype <- c(1:3)

key.species <- list(title="Plant",
 space="right",
 text=list(levels(CO2$Plant)),
 points=list(pch=symbols, col=colors))

xyplot(uptake~conc|Type*Treatment, data=CO2,
 group=Plant,
 type="o",
 pch=symbols, col=colors, lty=linetype,
 main="Carbon Dioxide Uptake\nin Grass Plants",
 ylab=expression(paste("Uptake ",
 bgroup("(", italic(frac("umol","m"^2)), ")"))),
 xlab=expression(paste("Concentration ",
 bgroup("(", italic(frac(mL,L)), ")"))),
 sub = "Grass Species: Echinochloa crus-galli",
 key=key.species)

Note the use of \n to give you a two-line title and the use of the expression() function to add mathematical
notation to the axis labels. Here, color is suppressed as a group differentiator by specifying a single color in the
col= option. In this case, adding 12 different colors is overkill and distracts from the goal of easily visualizing the
relationships in each panel. Clearly, there’s something different about the Mississippi grasses in the chilled
condition.

Last saved: 11/22/2013 Kabacoff / R in Action 2e 13

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

Carbon Dioxide Uptake
in Grass Plants

Grass Species: Echinochloa crus-galli

Concentration

mL

L

U
pt

ak
e
 um

ol

m
2

10

20

30

40

200 400 600 800 1000

Quebec
nonchilled

Mississippi
nonchilled

Quebec
chilled

200 400 600 800 1000

10

20

30

40

Mississippi
chilled

Plant
Qn1
Qn2
Qn3
Qc1
Qc3
Qc2
Mn3
Mn2
Mn1
Mc2
Mc3
Mc1

Figure 23.7 xyplot showing the impact of ambient carbon dioxide concentrations on carbon dioxide uptake for 12 plants in two
treatment conditions and two types. Plant is the group variable and Treatment and Type are the conditioning variables.

Up to this point, you’ve been modifying graphic elements in your charts through options passed to either the
high-level graph function (for example, xyplot(pch=17)) or within the panel functions that they use (for
example, panel.xyplot(pch=17)). But such changes are in effect only for the duration of the function call. In
the next section, we’ll review a method for changing graphical parameters that persists for the duration of the
interactive session or batch execution.

23.5 Graphic parameters
In chapter 3, you learned how to view and set default graphics parameters using the par() function. Although
this works for graphs produced with R’s native graphic system, lattice graphs are unaffected by these settings.
Instead, the graphic defaults used by lattice functions are contained in a large list object that can be accessed with
the trellis.par.get() function and modified through the trellis.par.set() function. The
show.settings() function can be used to display the current graphic settings visually (see figure 23.8).

14 Kabacoff / R in Action 2e Last saved: 3/25/2015

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

superpose.symbol superpose.line strip.background strip.shingle

dot.[symbol, line] box.[dot, rectangle, umbrella] add.[line, text]

Hello

World

reference.line

plot.[symbol, line] plot.shingle[plot.polygon] histogram[plot.polygon] barchart[plot.polygon]

superpose.polygon regions

Figure 23.8. Graphical parameters for trellis displays.

As an example, let’s change the default symbol used for superimposed points (that is, points in a graph that
includes a group variable). The default is an open circle. We’ll give each group their own symbol instead.

First, view the current defaults

show.settings()

and save them into a list called mysettings:

mysettings <- trellis.par.get()

You can see the components of this list by using the names() function

> names(mysettings)
 [1] "grid.pars" "fontsize" "background"
 [4] "panel.background" "clip" "add.line"
 [7] "add.text" "plot.polygon" "box.dot"
[10] "box.rectangle" "box.umbrella" "dot.line"

Last saved: 11/22/2013 Kabacoff / R in Action 2e 15

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

[13] "dot.symbol" "plot.line" "plot.symbol"
[16] "reference.line" "strip.background" "strip.shingle"
[19] "strip.border" "superpose.line" "superpose.symbol"
[22] "superpose.polygon" "regions" "shade.colors"
[25] "axis.line" "axis.text" "axis.components"
[28] "layout.heights" "layout.widths" "box.3d"
[31] "par.xlab.text" "par.ylab.text" "par.zlab.text"
[34] "par.main.text" "par.sub.text"

The defaults that are specific to superimposed symbols are contained in the superpose.symbol component:

> mysettings$superpose.symbol

$alpha
[1] 1 1 1 1 1 1 1
$cex
[1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8
$col
[1] "#0080ff" "#ff00ff" "darkgreen" "#ff0000" "orange"
[6] "#00ff00" "brown"
$fill
[1] "#CCFFFF" "#FFCCFF" "#CCFFCC" "#FFE5CC" "#CCE6FF" "#FFFFCC"
[7] "#FFCCCC"
$font
[1] 1 1 1 1 1 1 1
$pch
[1] 1 1 1 1 1 1 1

You see that the symbol used for each level of a group variable is an open circle (pch=1). Seven levels are defined,
after which the symbols recycle.

To change the default, issue the following statements:

mysettings$superpose.symbol$pch <- c(1:10)
trellis.par.set(mysettings)

You can see the effect of your changes by issuing the show.settings() function again. Lattice graphs now use
symbol 1 (open circle) for the first level of a group variable, symbol 2 (open triangle) for the second, and so on.
Additionally, symbols have been defined for 10 levels of a grouping variable, rather than 7. The changes will
remain in effect until all graphic devices are closed. You can change any graphic setting in this manner.

23.6 Customizing plot strips
The default background for the panel strip is peach colored for the first conditioning variable, pale green for the
second conditioning variable, and pale blue for the third. Happily, you can customize the color, font, and other
aspects of these strips. You can use the method described in the previous section, or you can take greater control
and write a function that will customize any aspect of the strip.

 Let’s start with the strip function. Just as each high level graphing function in lattice allows you to specify a
panel function for controlling the contents of each panel, a strip function can be specified to control the appearance
of each strip.

Consider the graph in figure 23.1. The graph displayed the heights of New York Choral Society singers by voice
part. The background color is peach (or is it salmon?) colored. What if you wanted the strip to be light grey, the
text of the strip to be black, and the font to be italicized and shrunk by 20%? You could accomplish this with the
following code:

16 Kabacoff / R in Action 2e Last saved: 3/25/2015

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

library(lattice)
histogram(~height | voice.part, data = singer,
 strip = strip.custom(bg="lightgrey",
 par.strip.text=list(col="black", cex=.8, font=3)),
 main="Distribution of Heights by Voice Pitch",
 xlab="Height (inches)")

The resulting graph is presented in figure 2.9.

Distribution of Heights by Voice Pitch

Height (inches)

P
er

ce
nt

 o
f

T
ot

al

0

10

20

30

40

60 65 70 75

Bass 2 Bass 1

60 65 70 75

Tenor 2

Tenor 1 Alto 2

0

10

20

30

40

Alto 1

0

10

20

30

40

Soprano 2

60 65 70 75

Soprano 1

Figure 23.9 A trellis graph with a customized strip (light grey background, with a smaller italicized font).

 The strip= option specifies the function used to set the appearance of the strip. While you can write a
function from scratch (see ?strip.default), it’s often easier to change a few settings and allow the others to
remain at default values. The strip.custom() function allows you to do this. The bg option controls the
background color, while par.strip.text allows you to controls the appearance of the strip text.

The par.strip.text option uses a list to define text properties. The col and cex options control the text
color and size. The font option can take the values 1, 2, 3, or 4, for normal, bold, italics, and bold italics
typefaces, respectively.

The strip= option changes the appearance of the strips in the given graph. To change the appearance for all
lattice graphs created in an R session, you can use the graphical parameters described in previous section. The
code

mysettings <- trellis.par.get()
mysettings$strip.background$col <- c("lightgrey", "lightgreen")
trellis.par.set(mysettings)

Last saved: 11/22/2013 Kabacoff / R in Action 2e 17

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

will set the strip background to lightgrey for the first conditioning variable and lightgreen for the second. The
change will be in effect for the remainder of the session, or until the settings are changed again. Using graphical
parameters is more convenient, but using a strip function gives you more options and greater control.

23.7 Page arrangement
In chapter 3 you learned how to place more than one graph on a page using the par() function. Since lattice
functions don’t recognize par() settings, you’ll need a different approach for combining multiple lattice plots into a
single graph. The easiest method involves saving your lattice graphs as objects, and using the plot() function
with either the split= or position= option specified.

The split option divides a page up into a specified number of rows and columns and places graphs into
designated cells of the resulting matrix. The format for the split option is

split=c(placement row, placement column,
 total number of rows, total number of columns)

For example, the following code

library(lattice)
graph1 <- histogram(~height | voice.part, data = singer,
 main = "Heights of Choral Singers by Voice Part")
graph2 <- bwplot(height~voice.part, data = singer)
plot(graph1, split = c(1, 1, 1, 2))
plot(graph2, split = c(1, 2, 1, 2), newpage = FALSE)

places the first graph directly above the second graph. Specifically, the first plot() statement divides the page
up into one column and two rows and places the graph in the first column and first row (counting top-down and
left-right). The second plot() statement divides the page up in the same way, but places the graph in the first
column and second row. Because the plot() function starts a new page by default, you suppress this action by
including the newpage=FALSE option. The plot is given in figure 23.10.

18 Kabacoff / R in Action 2e Last saved: 3/25/2015

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

Heights of Choral Singers by Voice Part

height

P
er

ce
nt

 o
f

T
ot

al

0
20
40

60 65 70 75

Bass 2 Bass 1

60 65 70 75

Tenor 2

Tenor 1 Alto 2

0
20
40

Alto 1
0

20
40

Soprano 2

60 65 70 75

Soprano 1

he
ig

ht

60

65

70

75

Bass 2 Bass 1 Tenor 2 Tenor 1 Alto 2 Alto 1 Soprano 2 Soprano 1

Figure 23.10 Combining graphs with the split option.

You can gain more control of sizing and placement by using the position= option. Consider the following
code:

library(lattice)
graph1 <- histogram(~height | voice.part, data = singer,
 main = "Heights of Choral Singers by Voice Part")
graph2 <- bwplot(height~voice.part, data = singer)
plot(graph1, position=c(0, .3, 1, 1))
plot(graph2, position=c(0, 0, 1, .3), newpage=FALSE)

Here, position=c(xmin, ymin, xmax, ymax), where the x-y coordinate system for the page is a rectangle
with dimensions ranging from 0 to 1 on both the x and y axes, and the origin (0,0) at the bottom left. The graph is
displayed in figure 23.11.

Last saved: 11/22/2013 Kabacoff / R in Action 2e 19

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

Heights of Choral Singers by Voice Part

height

P
er

ce
nt

 o
f

T
ot

al

0
10
20
30
40

60 65 70 75

Bass 2 Bass 1

60 65 70 75

Tenor 2

Tenor 1 Alto 2

0
10
20
30
40

Alto 1
0

10
20
30
40

Soprano 2

60 65 70 75

Soprano 1

he
ig

ht

60

65

70

75

Bass 2 Bass 1 Tenor 2 Tenor 1 Alto 2 Alto 1 Soprano 2 Soprano 1

Figure 23.11 Using the position option to combine graphs with greater precision.

You can also change the order of the panels in a lattice graph. The index.cond= option in a high-level lattice
graph function specifies the order of the conditioning variable levels. For the voice.part factor, the levels are

> levels(singer$voice.part)
[1] "Bass 2" "Bass 1" "Tenor 2" "Tenor 1" "Alto 2"
[6] "Alto 1" "Soprano 2" "Soprano 1"

Adding index.cond=list(c(2, 4, 6, 8, 1, 3, 5, 7)) would place the "1" voice parts together (Bass 1,
Tenor 1, …), followed by "2" voice parts (Bass 2, Tenor 2, …). When there are two conditioning variables, include
two vectors in the list. In listing 23.5, adding index.cond=list(c(1, 2), c(2, 1)) would reverse the order
of treatments in figure 23.7.

20 Kabacoff / R in Action 2e Last saved: 3/25/2015

Robert I. Kabacoff, Ph.D.
©Manning Publications Co. Please post comments or corrections to the Author Online forum:

https://forums.manning.com/forums/r-in-action-second-edition

23.8 Going Further
Lattice graphics offer a powerful and highly customizable approach to creating graphs in R. There are a number of
useful resources that can help you learn more about them. Deepayan Sarkar's Lattice Graphics: An Introduction
and William G. Jacoby's An Introduction to Lattice Graphics in R offer excellent overviews. Sarkar’s (2008) Lattice:
Multivariate data visualization with R is the definitive book on the subject.

